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The criterion (2.1) is proposed as a necessary condition to estimate the strength of an 
elastic body weakened by a slit. It is shown that the resulting formula for the critical 
crack length agrees. in practice, with the Griffith result. The concept of considering 
crack-slits in elastic bodies (surfaces of normal displacement jumps) as nontrivial equi- 

librium states of a physically nonlinear elastic medium is given a foundation. It is shown 
that the theory of crack [l] substantially examines the problem in precisely such a for- 
mulation, by linearizing it by the energy balance method. It is remarked that the crack 

stability criterion obtained by this means is not only necessary, but also sufficient. How- 
ever, it turns out that the necessary and sufficient criteria yield practically coincident 
results in the problem under consideration. 

I, Let us consider the well known problem of elasticity theory : tension of a plane 
with an elliptical cutout by normal stresses or,&,& co) = cr acting perpendicularly 

to the major axis of the ellipse. 
In this case the maximum normal stresses originate at the points z~=*/sl. When 

utilizing the linearized equations of classical elasticity theory they are given by 

max (a,,) = 6 [ 1+ ($-,‘“I (p = $-) (f.9 

where p is the least radius of curvature of the ellipse, I, h are its major and minor 

axes. 
It is customary to consider the inequality 

omax > Cr, (l-2) 
as the brittle fracture condition. 

Here crmaT is the greatest positive normal stress in the body, and r.rC is the limiting 

rupture stress. 
Apply~g this criterion to the problem under consideration, we arrive at the conclusion 

that for given stresses o at infinit), and a radius of curvature p the inequality 

I<1. J&$$) (1.3) 

will be the strength condition for a body weakened by an elliptical crack,where 2, is the 
critical crack length. Putting p = 0 in (1.3)* i.e. passing to the case of a crack in the 
shape of a slit, we obtain I, = 0 (1.4) 

Therefore, the deduction that the presence of a slit crack should induce the fracture 
of the body for arbitrarily small finite stresses CT, no matter how small the crack length, 
follows from linear elasticity theory and the criterion (I, 2). However, Griffith [1] showed 
from energy considerations that fracture should occur in the case of a slit crack (analo- 
gously to the case of an elliptical crack with finite transverse dimension) only if the 
crack length exceeds some critical value. Griffith proposed the inequality 

dU>dR v*51 
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as the energy criterion for the fracture of a body with a slit, where &J is the decrease 
in elastic energy of the body because of a dl increase in the crack (for in =& const), 
and dR is the work which must be expended to rupture the body by dl. When (1.5) is 
valid. the crack expands without limit, and is in the critical state in the case 

dU = dR (iA) 
For the problem of tension of a plane weakened by a slit oriented across the tension 

direction, linear theory of elasticity yields 
(1.71 

As regards dl?, Griffith assumed that the work required to rupture the body per unit 
area is a constant Zy, a physical constant characterizing the rupture strength of the ma- 
terial. In theknegry formulation of the problem this constant will be the analog of the 

constant (3, utilized in solving the stress problem. In the particualr case under considera- 
tion dR = 2dl (1.8) 

Substituting (1.8) into (I, 7) we arrive at the formula 

(1.9) 

The constant A depends on the mechanical properties of the body material. 
Therefore, two different, and apparently both correct, methods of reasoning based on 

the same theoretical solution of the problem of the stress distribution in a slit crack yield 

essentially dissimilar results. The application of the more general criterion (1. Z), which 
is valid for a hole of any shape, hence results in the particular case under consideration 
in an explicitly unequally likely deduction, not verified by tests, while the particular 
criterion (1.8), concocted especially for slit cracks yields an equally likely result veri- 

fied by tests. A. Griffith himself noted the correct means of interpreting this paradox, 
and later Elliot then developed it in more detail [3]. 

The fact is that in the neighborhood of the ends of the slit not only the stresses, but 
also their gradients, are infinite according to linear elasticity theory, consequently it is 
impossible to neglect the change in stress in the areas of their maximum values even 

at distances on the order of the atomic radius. This idea is developed below. 

2. The fracture of solids is a discrete process ; for example, it is impossible to sepa- 
rate half an atom from half an atom retaining the connection between their remaining 
halves, The destruction of rhe connection between just one pair of atoms will be a frac- 

ture “quantum”. Here and henceforth, keeping in mind the roughness of the subsequent 
reasoning which will rely on the apparatus of linear elasticity theory, it is meaningless 
to devote oneself to the peculiarities of atomic lattice structure. The lattices are treated 
as a set of adjoining atomic layers, where the atoms of each successive layer are located 
above the atoms of the preceding layer, i. e. ideal (not densely packed) cubic lattices 
are examined. 

If account is taken of the above, the fracture criterion (1.2) in the domain of high 
stress gradients should be written in the integral form 

‘La 

where ayy is the normal stress perpendicular to the atomic layer, 3: is the spacing meas- 
ured along a rectilinear chain of atoms in the direction of most rapid change in stress, 
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and a is the atomic radius, 

The rreeessity of the sterns (a 3-f is &den% If the given ~~qu~l~~ is not satisfiert, 
fracture cannot occur since the external farces applied to the body turn out not to be in 

a state to overcome the maximum value of the intratomic forces even for one pair of 
atoms. Let us show that application of this criterion to the problem of tension of a plane 
weakened by a slit crack reduces to a formula practically coincident with the Griffith 

result (t 9)* The d~~bn~~ of normal stresses (sy rf along the z-axis near the end of 

the crack is defined by the asymptotic formula 141 

5 UY 
E-6 i-i_+: 

( z 2 ) (2.2) 

The y-axis is here perpendicular to the crack, and the +axis is directed along the 

crack from the origin to tbt%end being considered, Un the basis of (2.2) 

Substituting (2.3) into (2,X) we obtain 
1 

( ) 

IIS 
$---o=o * 1) or 

2a 

(2.3) 

Here cr,is the rupture yield point of 2f defectless atomic lattice. Hence, In the maja- 
rity of cases it is permissible to neglect o* in (2.5) as compared with oC, after which 

(the quantity .B is a physical constant) 

In 8% form (2.6) agrees with the Griffith form&a (I. 9). Let us show that the consmnt~ 

A , B In these formulas are sufficiently altie, Indeed, according to (1.9) and (2.6) 

Taking account of the approximateness of (2.8) (it has been derived under the assurnp- 

tion that the dependence of the force of interaction between two atoms on the change 

in the spacing between them is approximated by half a sinus&d), it can be said that 

fl_ 9) and (a, 6) practieaIIy c&x%de, 
It is hence seen &at tl~e. Griffith form&t has been deriw~d non a&y by awgy means, 

but also from the stress snength criterion under the natural extension of thiscriterion to 
the case af high stress gradients. 

3, As is known, the stress distribution in the neighborhood of a slit crack can be ob* 
tained by passing to the limit from the solnt&sn of the problem of the stress d~s~ibuti~ 
in the nel~~~rh~ of an elliptical crack for p + 0. Formufa (2-6) should hence also 
be obtained by an analogous passage to the limit from the formula for the critical length 
of an elliptical crack if the strength criterion is used in the “discrete form”’ (2.1) rather 
than the “point” form (X.2) in its derivation, It is quite interesting to execute a corre- 
sponding refinement of the result (1.3). According to G, V. Kolosov formulas, the stress 
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distribution along the x-axis is 

otiv = Q”(z) +z@‘(x) + $‘“(r) 
Hence 

s 
sYv dx = cp (x) + II; (r) + q’ (r) + const 

(3-i) 

(3.2) 

In the problem of the extension of a plane with an elliptical cutout [6] 

cp[S) =~~[X~-C(~-rn~)],~ * (5) = - c3 (1 + myI --i-“-- (3.3) 

ri, = _L- [x _ 75.2 - l/4 (12 - h2)] , 
l-h 

2mlC mI = ~+h 

Substituting (3.3) into (3.2). assuming therefore that a / I < 1, h / I 41, and We- 
grating between the limits “/a(( z < ‘1, 1+ Z&r, we have 

(3.4) 

After substituting (3.4) into (2.1) we arrive at the following formula for the critical 

length of an elliptical crack: 
E (a -+(p+ 4a) *- (3.5) 

This formula is more exact than (1.3) since discreteness of the fracture process is taken 

into account in (3.5). 

For sufficiently narrow cracks (5 4 o,, approximately 

1 ,=:-gh+ 4a) (3.6) 

Hence, (1.3) is obtained from (3.5) for a < p , and we have (2.6) for p < a , as 
should have been expected, The preceptive value of (3.6) is that it permits interpreta- 

tion of the Griffith formula not only as a valid result for slit cracks, but also as an approx- 

imate solution for “solid” cracks with sufficiently small radii of curvature of their end- 
points, where the error estimate is seen in passing from (3.6) to (2.6). 

Meanwhile, in order to reconcile the Griffith formula to the stress strength criterion, 

Cottrell [8] postulated that (1.1) can be utilized only for p > p*, and o_, should be 
considered independent of p and equal to o’,, (p’) for p ( p*. Cottrell determined 
de magnitude of the effective radius of curvature of the end p* of the crack by demand- 
ing that for a crack with p < p* (including slit cracks) the critical crack length should 
coincide with its value according to Griffith. It hence turns out that p* z 3fZ. The 

result (3.5) obtained by means of other considerations justifies the Come11 assumption. 
In fact, (3.5). being bases on the generalized suength criterion (2.2). can be obtained 

formally from (1.3) derived by starting from the “point” strength criterion, by replacing 
the radius of curvature p of the end of the crack in this latter by 

p* z Pt 4 a (3.7) 
where 

p* = 4a 

for a slit crack, which practically agrees with the Cottrell recommenda~n. 

4, Relative to the derivation proposed above for the Griffith formula from the stress 
strength criterion, the objection can be advanced that continuum mechanics has no right 
to consider dimensions on the order of an atomic diameter as a finite quantity. 

However, this objection refers equally to the energy theory of Griffith, as well as to 
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other existing theories which consider cracks as slits, since they, at least in veiled form, 
contain the atomic radius as a characteristic parameter of the problem. Indeed, accord- 

ing to (2.6) and (2.8) 
Y = a& (4.1) 

Here a is a dimensionless coefficient. Its mean value is usually taken as 

a z 0.1 (4.2) 
Dividing y by E we obtain the constant of the length dimension 

@ = y / E = O.la (4.3) 

Therefore, even in the Griffith theory, altough in latent form, the physical constant 
alien to continuum mechanics, the atomic radius, is contained. It is also present in the 

6, of the crack theory of Leonov and Panasiuk [I. 9 and lo], where the equality 

2 y = rr,8* (4.4) 
plays an essential part 

In the case of ideal brittle fracture, y and oCin (4.4) .are determined by (4.1) and 
(2.6). Taking (4.2) as the mean value for a and putting ‘oc ;2: O.M, we obtain 

6 *=u 

i.e. in this case 6,practically coincides with the atomic radius, 

(4.5) 

The appearance of this physical constant in all brittle fracture theories which consider 
cracks as ideal slits, is inevitable since it is necessary to have at least one characteristic 

value of the length dimension in addition to the crack length in such a formulation of 
the problem. It is neither in the conditions of the problem nor in the classical theory of 
elasticity,and it can only be introduced,by taking account of the discreteness of the struc- 

ture of solids. The single characteristic dimension in ideal atomic lattices is the radius 

of the atom, hence it is just this that enters the theory of slit cracks as the physical con- 

stant supplementing the constants of elasticity theory. There should be added also that 

even the problem of quasi-brittle fracture (i. e. the question of slit crack propagation in 

elastoplastic solids) cannot be solved without involving the physical constant of the 
length dimension. Since there are no such constants in either elasticity or plasticity the- 

ories, it should be sought among the characteristics associated with the discreteness of 
the suncture of solids (grain size, mean spacing between lattice defects, atomic radius). 
But this subject is not embraced in the present study. 

6. As has been remarked, the criterion (2.1) is necessary. If the inequality (2.1) is 
not satisfied, then fracture may be known not to occur since in this case the stresses are 

insufficient for the maximum value of the interaction force to be exceeded for at least 
one pair of atoms. 

For small stress gradients, when the change in these latter can be neglected within the 
limits of many atomic series, the criterion (2.1) will be not only a necessary, but a suf- 

ficient condition for macroscopic fracture of a body. But in the case of large stress gra- 
dients (as occur in problems of the stress concentration near slots and slits, say), the suf- 
ficiency of the criterion (2.1) becomes doubtful since it assures overcom~g of the max- 
imum interaction force between just two atomic serles.Upon being included among 
other atomic series retaining stability, these two series turn out to be constrained ln 
their displacements, and their failure should seemingly not involve macroscopic fracture 
of the body. The situation recalls that known from the theory of the carrying capacity 
of statically indeterminate systems for which the buckling or fracture of individual 
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elements still does not mean fracture of the system as a whole. 
It follows from the above that upon being applied to the problem of slit cracks, the 

criterion (2.1) should yield a lower bound for the fracturing sness or and correspondingly 
for the critical crack length. A more exact estimate of the strength of a body weakened 

by a slot requires an investigation of the stresses in this problem taking into account the 

true picture of atom interaction in the neighborhood of the ends of the slot rather than 

on the basis of Hooke’s law. 

6, Let Q” = 2ao denote the interaction force between two arrays of atoms referred 
to unit length. The dependence of T on the change in spacing ‘1 between the arrays 

IT 
series is as shown in Fig. 1. 

One of the appropriate mathematical forms of this 
dependence will be 

T 7~ 2ao = Eqe 
-‘Yflc 

(6.1) 

where tICis the value of ?I corresponding to Tlllax= 2acrc, 
where II 

1 - Rili,e-‘, may - SC: ~1 $$ e-L (6.2) 

There are ascending (q < llC) and descending 

(q > qe) portions of the curve T - IJ , where there 
I \ 

J 
is an essential difference in the nature of the deforma- 

7 ‘1 tion depending on whether the stress is on the former or 

Fig. 1 latter portion. 
The stresses grow on the first portion as the deforma- 

tion increases (divergence between the atomic arrays), and conversely, decrease on the 

second. The equilibrium of the atoms is stable at each point of the ascending portion, 
and is unstable at each point of the descending portion since in this latter case the atoms 
start to diverge without limit for a small deviation from the equilibrium position towards 

a growth in deformation, while the magnitude of the stress is conserved. 
Let us consider the following situation (Fig. 2) : let the spacing between two plane ato- 

mic layers, whose position is considered fixed, be 22, ) & i-211,;, and let there be still 
another, parallel, atomic layer between these two, which is subjected just to forces acting 

on it from the two fixed layers. Assuming these forces to be subject to the law (6. l), it 
is easy to establish that in addition to the trivial equilibrium position x1 = 0, the inter- 

mediate layer has two other equilibrium positions symmetric relative to the x = 0 
plane x,= + x*, x3 = - It‘* (6.3) _ 
where xa, x3 are roots of the transcendental equation 

:I: = (x0---2~) th $ (6.4) _-------- 
The trivial equilibrium position is hence unstable, and the 

two other equilibrium positions are stable. 
From these considerations it follows that an atomic layer 

Fig. 2 
may not simultaneously be in an interaction state correspond- 
ing to the descending portion of the T - q curve with two 
adjacent fixed atomic layers, it must certainly be attracted 

to one of them. The interaction correponding to the descending branch of the T - rl 
curve may thereby not exist simultaneously at several adjacent atomic layers in practice, 
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but can only occur between two adjacent atomic layers under the additional condition 

that the portions of the atomic layers between which such a state has originated are con- 
strained in displacements. This latter can be assured only if the mentioned portions are 

of finite size, and surrounded by atomic layers which retain stability. The divergence 

of two atomic layers to a distance ?J > ye in some domain should be considered as the 

formation of a slot in the body, whose edges will again be formed by the boundaries of 
the body. In the mathematical solution of the problem, the mentioned sections within 
the body should be considered plane slits to whose lips are applied interaction forces 

subject to the law o= &[~+~lc-s”:fl~ (li.5) 

where 2~ is the distance between the lips of the slot. 
The above exposition permits viewing the slit-crack theory from an unusual viewpoint, 

namely : considering them as nontrivial solutions of elasticity theory problems whose 
possibility results from the nonlinearity of the appropriate equations. Taking a nonlinear 

law of the form (6. I) rather than the linear law for the binding between atoms, we natu- 
rally lose the uniqueness of the solution. For example, considering the tension on a plane 

by forces at infinity or, v = cr,we shall have additional stable solutions in addition to 
the trivial stable solution (3 

xx= xv CJ = 0, oyy = CT 

and, further, their uncountable set. The formation of displacement jumps in the bodyat 
certain plane sections within the body, i.e. the formation of slots, corresponds to these 

solutions. The shape and size of these slots can be 
determined by solving the nonlinear problem for- 

mulated above. From this viewpoint the formation 
of a crack in an elastic body is a phenomenon of 

the type of buckling in the large, analogous to the 
snapping of a spherical shell, say. The shape and 
size of a dent formed during snapping are comple- 

. 
‘+_ tely defined, but the place it will form is uncertain, 

+ a dent can appear at any point of a shell. The 

‘I number of dents is also uncertain, in principle, 

Fig. 3 
several can originate. 

An analogous uncertain~ is conserved also in 
the problem of the equilibrium of an elastic plane, where just as in the previous exam- 

ple, the place of crack formation, and the quantity of cracks being formed remain un- 
certain. 

7. The nonlinear problem formulated above. of seeking ambiguous solutions of the 
problem of extension of an elastic plane in which the interaction between atoms is sub- 

ject to a law of the form (6.1) is quite difficult, and can hardly be solved rigorously. A 
successful approximate solution is given by Leonov and Panasiuk, discussed in detail in 

In 
Although the mentioned authors do not give their results, the treatment which was 

given above by assuming that a slit exists in the body beforehand, and that its length is 
given in advance, nevertheless, they substantially considered the question of ambiguo~ 
solutions of the problem of the extension of a nonlinear elastic plane. 

The curve of Fig. 1 is replaced in [lo] by the curve in Fig. 3, according to which 
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Hooke’s law is valid for TI < rle while for ‘rl > ?‘lC 

o= 
1 

cr, (%<<<fslc-+- 6,) (7.1) 
0 (r)>c+6*) 

where 8, is chosen from the requirement that the areas of the true and approximate 

curves be equa1,i.e. from the condition xy = o&j,,, (72) 

It is easy to recognize the energy balance idea widely used in de solution of nonlinear 

problems in this simplification, Altough the T - q graph remains nonlinear in such a 
simplification, nevertheless, the considered problem becomes linear since Hooke’s law 
operates at all points within the body, and the forces applied to the slit lips are converted 

into a constant loading independent of the displacements of the lips. 
Having been given the slit length 1 and requiring that the stresses at its ends be equal 

oYY = a,, the domain of values of I in which the posed problem has a solution, can be 
be determined. All the necessary commutations are successfully carried to a conclusion, 

and the following fundamental results ensue. 
The width of sections within the slit end on which the constant stresses uyy = UC 

act is determined by the approximate expression 

AI=ggl (7.3) 
which reduces to 

c 

L\=’ Er ’ --a 
4 Qe2 lg (7.42 

if (1.9). (2.8) are taken into account. 

The critical value of me slit length (i. e. the limiting value of this length beyond 
which the solution of the nonlinear problem under consideration does not exist) is obtained 

practically coincident with the Griffith critical length 1, (under the condition that 

I> a*, which is always satisfied for macroscopic slots, since the quantity 6, will be 
on the order of the atomic radius according to the estimate (4.5)). Hence,(even if it is 
taken into account that (2.8) lowers y somewhat since its deduction is based on replac- 

ing the descending branch of the T - q curve by a segment of a sinusoid, shown dashed 

in Fig, 1) A will be a quantity which does not exceed the atomic diameter. 

The distribution of normal stresses crl/v at the end of a crack 2 = ‘IsI + A in the 

critical state, is determined by 

bUU (E, 0) = + 6, [ 1+ $ arc sin (-$$)I (7.5) 

A* = _$ , g = x - ‘~zl’ - A 
(7.61 

This formula can be derived from the more awkward expression (1.13) in [lo], if it is 
considered that A* and g are negligibly small quantities compared with unity. Putting 
E = A* in (6.5), we have a,,(A*, 0) = 'I, oc (7.7) 

It is hence seen that the stresses or, y decrease rapidly as .a point recedes from the new 
end of the slit, and already become half the maximum value at,distances on the order 
of the atomic diameter. 

Therefore, according to the solution elucidated, the crack takes on a tendency to pro- 
pagate when the atomic bonds at its ends are overcome on sections on the order of an 
atomic diameter, i.e. when two pairs of atomic arrays are uncoupled. But precisely this 
condition was indeed taken as the fracture criterion in deriving (2.6). It hence becomes 
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clear why the results of the theory in [lo] agree with (2.6) and (1.9). Quantitative esti- 

mates of (4.5) and (7.4).for G,and & show that it is impossible to map the ends of the 
crack in the area of application of the adhesion forces as the curve of a line in a con- 

tinuum (this is donezin many works on cracks) since the mouth of “the beak” is 6, zz a, 
and the length of “the beak” is h ==: 2a. 

In contrast to the solution obtained from the criterion (2.1). the solution considered 
above will be not only necessary but also sufficient since the combined work of the 
whole system of atoms of the body is taken into account in the neighborhood of the crack, 
where attention is paid to the possibility of failure of part of the elements of this system 

to which interaction between some atoms according to the law of the descending portion 
of the T -_rl curve will correspond. In substance, the carrying capacity of a body having 
a slit is estimated in the present solution, while the criterion (2.1) allows only the con- 

dition of failure of the weakest elements of a system formed by a set of atoms, to be 
obtained. The fact that both solutions turn out to be quite close quantitatively indicates 
that the necessary strength condition in this problem turns out to be sufficient also, in 

practice. It had been impossible to forsee this in advance. For example, if (7.3) were 
to yield a value of A on the order of 10 a, then according to the sufficient criterion the 
crack length would have been several times greater than the Griffith value. 

8, Under additional simplifications inherent in the linear elasticity theory, the appa- 

ratus of continuum mechanics is applied to problems in the theory of brittle fracture of 
bodies weakened by slits, in which: - Hooke’s law is not valid, where the physical non- 

linearity is quite substantial ; - the deformations and angles of rotation are comparable 

to one I - dimensions on the order of the atomic diameter should be considered finite. 
But not even this will be the principal source of error in this theory, as is the fact that 

plastic deformation which originate inevitably at the ends of crack in even quite brittle 
materials, are neglected completely. 

Consequently, the formulas presented above must not be depended upon for quantitative 

confidence. This is precisely why the engineering theory of crack propagation has been 
developed primarily as a phenomenologicat theory. The rationality of this aspect is given 

the clearest foundation in the work of Irwin [ll]. 

However, theoretical investigations based on idealized models and attempting to cla- 
rify the connection between crack propagation conditions and physical constants charac- 

terizing the body material, continue intensively. The advantage of such investigations 

is the deepening of insights into the comparative role of the various factors affecting the 
stress field in the neighborhood of the ends of the crack, and the condition of its propa- 
gation. 

The reasoning expounded herein sheds light on some peculiarities of slit-crack theory 
and allows the following deductions. 

1. The Griffith formula (1.9) can be deduced from the solution (2.2) of classical elas- 
ticity theory, and the strength criterion (1.2) in a natural extension to the case of large 
stress gradients (2.1). 

2. The theory of slit crack propagation (in any modification) cannot manage without 
the physical constant of the length dimension. Such a constant will be the atomic radius 
in brittle fracture theory. 

3. It results from (3.5) that the Griffith formula (1.9) can be considered as a result 
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valid not only for slit cracks, but also as an approximate formula for cracks with finite 
spacing between the lips under the condition that the radius p of the end of the crack 
is a quantity on the order of a. 

4. The fracture condition (2.1) is not only necessary but also sufficient, judging by 
the fact that the resulting picture of interatomic forces in the neighborhood of the crack 
ends agrees with the picture which follows from the theory in [lo] yielding an approxi- 
mate estimate of the carrying capacity of a body weakened by a crack. 

5. Slit cracks can be interpreted as the nontrivial solution of the problem of tension 

of an elastic ,plane if the connection between the stresses and strains is nonlinear, of the 

form of (6.1). Crack formation hence turns out to bea phenomenon of the type of buck- 
ling in the large. 
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